

ASSESSMENT AND VALIDATION OF NEXT GENERATION EV HIGH POWER CHARGING PROFILES

PROJECT ID# ELT272

2021 Vehicle Technology Office Annual Merit Review June 2021

KEVIN STUTENBERG

Principal Investigator Advanced Mobility Technology Laboratory Argonne National Laboratory

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

OVERVIEW

Timeline:

- Project Start Date 6/1/2020
- Project End Date- 3/31/2022
- Percent Complete- 75%

Budget:

- Project Funding:
 - FY20: \$225k
 - FY21: \$75k

Collaborations / Partners:

- ELT266: Nex-Gen Profiles
 - 200kW + focus
 - FY21 AMR presentation
- US DOT NHTSA
 - Supported vehicle collaboration

ASSESSING THE LIMITS AND LOADS OF MODERN ELECTRIC VEHICLE CHARGING

Relevance:

In-depth datasets of advanced EV high-power charging at varying conditions are needed to capture vehicle and grid impacts

Approach:

- Vehicle-system focused DC charging behavior:
 - Charge profiles (with varying ambient &battery temps)
 - Power limitations (Charge Power vs SOC vs Temp)
 - Component operation during the DC Charge
 - Advanced charge conditioning behaviors
 - Tesla 'On-route warmed' DC charging impacts

Project utilizes developed & available resources:

- Heavily instrumented, road worthy, research fleet
- ANL equipment and facilities Smart Energy Plaza
- Chicagoland area DCFC network
 - Tesla Supercharger (all types) / CHAdeMO / CCS

2020 Chevrolet Bolt
MY20: 66kWh
SAE- Combo
up to ~55kW

2020 Tesla Model 3
Long Range / AWD (~75 kWh)
Supercharger / Chademo
250kW @ Tesla v3
150kW @ Tesla v2
72kW @ Tesla Urban
50kW w/ CHAdeMo adapter

ACCOMPLISHMENTS: INSTRUMENTATION HIGHLIGHTS

During logging, RAW vehicle communication (CAN) collected

TESTING SUMMARY

- General operator test notes
 - Environment conditions
 - Vehicle state (mileage, firmware ver., etc)
 - Surrounding vehicles notes
 - General notes during the data capture
- 'Since last charge' metrics
 - Captured data about prior discharge cycle (vehicle dependent signal)
- Pictures
 - Charging station, vehicle, dash, etc.
- Specific AC power data
 - ANL IOC data captured multiple DCFC stations
 - Offsite metrics as reported

KEY COMMUNICATION (CAN) MESSAGES

- Vehicle state:
 - Active systems (HVAC, screen, audio, etc)
 - Environment (ambient temp / solar load)
- BMS data:
 - Voltage, Current, SOC, Capacity, Temp, Energy
- Charger data:
 - Voltage, Current, Limits, State
- Cooling system: Temps, Flows, Set points, State
- Low voltage system metrics for power flow
- Limits- BMS power or charger

Signals are variable based on test vehicle

Note: Due to Tesla OTA updates, available CAN messages do change between updates- requiring attention/revision.

DEVELOPMENT OF A DATA MANAGEMENT PIPELINE

- Connecting- Determine location and directly capture vehicle network traffic
- <u>Decoding</u> of desired signals from vehicle communication networks / <u>validation</u> of signals
- Data collection of RAW CAN
 - Scripting for independent operation
 - Enables changes post test if updates found
 - Results in LARGE binary files (1-5 gb)
- Post Processing from binary
 - Signal and sample rate selection (2hz)
- **Merging** generation of combined data set
 - Merging of test summaries
 - Development of useful key metrics
- Analysis and Data Distribution

Collecting

ACCOMPLISHMENT HIGHLIGHT EXAMPLE: TESLA MODEL 3 SUPERCHARGE- V3 95F

2020.32.3

TESLA SUPERCHARGING SUMMARY (ALL TESTS)

Image overview:

- Overlay of charge events displayed from variety of Tesla Supercharger stations
- Wide range of ambient and vehicle states

Technical Highlights:

- Even on V3 stations 200kW charging rare and short
- High variability of power delivered from V2 stations
- (80-150kW)
- Charging profiles converge above 70% (BMS limits)
- HV Batt coolant & cell temps generally converge at 52C at EOT

SUMMARY:CURRENT STATUS AND HIGHLIGHTS

COVID-19 presented challenges, but progress strong

Limited equipment and opportunities for depletion

• Instrumentation completed for all test vehicles

- CAN based data collection w/ supplemental summary data
- Facilities data for ANL- based DCFC

Charge sessions captured:

- 100+ total sessions captured (Goal:120 charge events)
 - 40+ sessions with Tesla Model 3
 - Multiple vehicle firmware updates during process
 - 30+ sessions with 2020 Chevrolet Bolt
 - 20+ sessions with 2020 Nissan Leaf
- Charges at all desired station types (focus on below 200kW)
- Wide range of ambient temps (0-100F)
- Variable starting and ending SOC (0%-100%)
- Data collection throughout 2021
 - Further capture high ambient temperature and start/end SOC variations
 - Datasets to be made available for DOE collaborative research efforts FY2021

